National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Influence of boundary walls on the flow from the ventilation outlet
Molčan, Filip ; Jícha, Miroslav (referee) ; Jedelský, Jan (advisor)
The goal of this work is to experimentally assess the influence of limiting walls of Škoda Octavia 3 automobile cabin to the air jet flowing from the right-front situated automotive vent which is part of a car dashboard. The experiment is performed by the smoke visualization method. There is a single construction option measured for an experiment. The setup of the vanes direction and the air flow rate are modified for this option. The experiment is divided into two phases. In the first phase, the visualization of the free air flow is conducted. In the second phase, exit plates are constructed and consequently, the visualization of the wall-jet flow is conducted. The results of both are compared to each other. The results imply that the influence of the surrounding surfaces must be taken into account with the increasing flow rate for the vanes set in the direction of upper-right, middle-right, and middle-middle. There is a direct interaction between the flow and exit plates (the flow impact, the Coanda effect). The free flow does not contain the information about the mutual interaction between the flow and the exit plates, as it is in the case of the wall-jet flow. In the case of the wall-jet flow, the opening of the flow takes place due to the effect of the impact and the subsequential suction caused by the Coanda effect. The exit plates substituting the car dashboard and the front window contribute to the prevention of the air intake from surrounding space and consequently to earlier flow opening from the vent. The present work also contains the measurement methodology and the image evaluation, the comparison with previous free flow measurements (70% match) and the comparison to the measurement of hot-wire anemometry method.
Evaluation of functionality of several modifications of ventilation outlet for passenger car cabin
Caletka, Petr ; Hejčík, Jiří (referee) ; Jedelský, Jan (advisor)
This master thesis deals with determination of boundaries of the flow from a benchmark automotive vent (right-front situated – in front of a front passenger) using the smoke visualization. In this thesis is tested a pack of eight different constructional variants which differ among them by the type of deflection grille. The angles of the flow borders are compared to specific directional requirements (defined by ŠKODA AUTO a.s.) and there is evaluated a directability of each of the constructional variant on the bases of these results. The results of experiments show that better directability in vertical plane achieve deflection grilles with horizontal vanes situated closer to orifice of the vent or deflection grilles with higher number of horizontal vanes and lower number of vertical vanes (independently of their location). Directability of the deflection grilles in horizontal plane is analogically better with vertical vanes situated closer to orifice of the vent or with deflection grilles with higher number of vertical vanes and lower number of horizontal vanes (independently of their location).
Influence of boundary walls on the flow from the ventilation outlet
Molčan, Filip ; Jícha, Miroslav (referee) ; Jedelský, Jan (advisor)
The goal of this work is to experimentally assess the influence of limiting walls of Škoda Octavia 3 automobile cabin to the air jet flowing from the right-front situated automotive vent which is part of a car dashboard. The experiment is performed by the smoke visualization method. There is a single construction option measured for an experiment. The setup of the vanes direction and the air flow rate are modified for this option. The experiment is divided into two phases. In the first phase, the visualization of the free air flow is conducted. In the second phase, exit plates are constructed and consequently, the visualization of the wall-jet flow is conducted. The results of both are compared to each other. The results imply that the influence of the surrounding surfaces must be taken into account with the increasing flow rate for the vanes set in the direction of upper-right, middle-right, and middle-middle. There is a direct interaction between the flow and exit plates (the flow impact, the Coanda effect). The free flow does not contain the information about the mutual interaction between the flow and the exit plates, as it is in the case of the wall-jet flow. In the case of the wall-jet flow, the opening of the flow takes place due to the effect of the impact and the subsequential suction caused by the Coanda effect. The exit plates substituting the car dashboard and the front window contribute to the prevention of the air intake from surrounding space and consequently to earlier flow opening from the vent. The present work also contains the measurement methodology and the image evaluation, the comparison with previous free flow measurements (70% match) and the comparison to the measurement of hot-wire anemometry method.
Evaluation of functionality of several modifications of ventilation outlet for passenger car cabin
Caletka, Petr ; Hejčík, Jiří (referee) ; Jedelský, Jan (advisor)
This master thesis deals with determination of boundaries of the flow from a benchmark automotive vent (right-front situated – in front of a front passenger) using the smoke visualization. In this thesis is tested a pack of eight different constructional variants which differ among them by the type of deflection grille. The angles of the flow borders are compared to specific directional requirements (defined by ŠKODA AUTO a.s.) and there is evaluated a directability of each of the constructional variant on the bases of these results. The results of experiments show that better directability in vertical plane achieve deflection grilles with horizontal vanes situated closer to orifice of the vent or deflection grilles with higher number of horizontal vanes and lower number of vertical vanes (independently of their location). Directability of the deflection grilles in horizontal plane is analogically better with vertical vanes situated closer to orifice of the vent or with deflection grilles with higher number of vertical vanes and lower number of horizontal vanes (independently of their location).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.